Emerging & Re-emerging Infectiious Diseases
National Institute of Allergy and Infectious Diseases Home
skip navigation Main Getting Started Teacher's Guide Student Activities About NIH and NIAID
Teacher's Guide - return to teacher's guide home hand using a mouse

Understanding Emerging and Re-emerging Infectious Diseases (continued)

Other examples of the benefits of basic research include the development of HIV protease inhibitors by researchers funded by NIH and others. These drugs, when used in combination with other anti-HIV drugs, are responsible for the dramatic decrease in deaths from AIDS in the United States. One active area of research at NIH is the development of new types of vaccines based on our new understanding of the immune system. In addition, basic research on the immune system and host-pathogen interactions has revealed new points at which vaccines could work to prevent diseases.

Finally, basic research on the ecology of disease organisms—their reservoirs, modes of transmission, and vectors, if any—reveals points at which preventive measures can be used to interrupt this cycle and prevent the spread of disease. For example, research supported by NIAID delineated the mechanism of Lyme disease transmission and how disease results: The tick vector was identified and the life cycle of the causative bacterium was traced through deer and rodent hosts. Understanding this ecology has led to predictions about the regions where and years when the threat of Lyme disease is greatest, as well as recommendations to the public for avoiding infection. These examples and others demonstrate that investment in basic research has great long-term payoffs in the battle against infectious diseases.

Infectious Diseases and Society

What are the implications of using science to improve personal and public health in a pluralist society? As noted earlier, one of the objectives of this module is to convey to students the relationship between basic biomedical research and the improvement of personal and public health. One way to address this question is by attending to the ethical and public policy issues raised by our understanding and treatment of infectious diseases.

Figure 9 - Most states allow exemptions to immunization law. D
Figure 9

Ethics is the study of good and bad, right and wrong. It has to do with the actions and character of individuals, families, communities, institutions, and societies. During the last two and one-half millennia, Western philosophy has developed a variety of powerful methods and a reliable set of concepts and technical terms for studying and talking about the ethical life. Generally speaking, we apply the terms "right" and "good" to those actions and qualities that foster the interests of individuals, families, communities, institutions, and society. Here, an "interest" refers to a participant's share or participation in a situation. The terms "wrong" or "bad" apply to those actions and qualities that impair interests.

Ethical considerations are complex and multifaceted, and they raise many questions. Often, there are competing, well-reasoned answers to questions about what is right and wrong, and good and bad about an individual's or group's conduct or actions. Thus, although science has developed vaccines against many diseases, and public health laws encourage their widespread use, individuals are permitted (in most, but not all, states) to choose not to be vaccinated.

Typically, answers to these questions all involve an appeal to values. A value is something that has significance or worth in a given situation. One of the exciting events to witness in any discussion in ethics in a pluralist society is the varying ways in which the individuals involved assign value to things, persons, and states of affairs. Examples of values that students may appeal to in discussions of ethical issues include autonomy, freedom, privacy, protecting another from harm, promoting another's good, justice, fairness, economic stability, relationships, scientific knowledge, and technological progress.

Acknowledging the complex, multifaceted nature of ethical discussions is not to suggest that "anything goes." Experts generally agree on the following features of ethics. First, ethics is a process of rational inquiry. It involves posing clearly formulated questions and seeking well-reasoned answers to those questions. For example, developing countries suffer particularly severely from many infectious diseases because conditions of crowding and poor sanitation are ideal for the growth and spread of pathogens. The same is true for many inner city environments. These places provide a constant reservoir of disease-causing agents. We can ask questions about what constitutes an appropriate ethical standard for allocating health care funds for curtailing the spread of infectious diseases. Should we expend public research dollars to develop drugs whose cost will be out of reach for developing countries or those in the inner cities? Is there any legal and ethical way for the United States to prevent over-the-counter sales of antibiotics in other countries, a practice that may enhance the evolution of antibiotic resistant pathogens? Well-reasoned answers to ethical questions constitute arguments. Ethical analysis and argument, then, result from successful ethical inquiry.

Second, ethics requires a solid foundation of information and rigorous interpretation of that information. For example, one must have a solid understanding of infectious disease to discuss the ethics of requiring immunizations and reporting of infectious diseases. Ethics is not strictly a theoretical discipline but is concerned in vital ways with practical matters. This is especially true in a pluralist society.

Third, because tradeoffs among interests are complex, constantly changing, and sometimes uncertain, discussions of ethical questions often lead to very different answers to questions about what is right and wrong and good and bad. For example, we acknowledge that individuals have a right to privacy regarding their infectious disease status. Yet, some argue that AIDS patients who knowingly infect others may have their right to privacy overridden so that partners may be notified of the risk of contracting AIDS.

It is our hope that completing the activities in this module will help students see how understanding science can help individuals and society make reasoned decisions about issues relating to infectious diseases and health. Science provides evidence that can be used to support ways of understanding and treating human disease, illness, deformity, and dysfunction. But the relationships between scientific information and human choices, and between choices and behaviors, are not linear. Human choice allows individuals to choose against sound knowledge, and choice does not necessarily lead to particular actions.

Nevertheless, it is increasingly difficult for most of us to deny the claims of science. We are continually presented with great amounts of relevant scientific and medical knowledge that is publicly accessible. As a consequence, we can think about the relationships among knowledge, choice, behavior, and human welfare in the following ways:

One of the goals of this module is to encourage students to think in terms of these relationships, now and as they grow older.

back    1 | 2 | 3 | 4     

Copyright | Credits | Accessibility