Drug Abuse and Addiction

Overview
Students examine data from animal experiments, play a card game, and examine a case study. They learn that although the initial decision to take drugs of abuse is voluntary, continued use may lead to addiction, which is the continued compulsive abuse of drugs despite adverse consequences. Students then watch a minidocumentary online to learn how drugs cause long-term changes in the brain.

Major Concept
Addiction is a brain disease.

Objectives
By the end of these activities, the students will
• understand that drug abuse initially is a voluntary behavior,
• be able to define drug addiction as the continued compulsive drug abuse despite known adverse health or social consequences,
• understand that drug abuse and addiction are associated with long-term physical and functional changes in the brain, and
• recognize that addiction is influenced by biological factors (for example, genetics and age) and by the social and behavioral context of drug use.

Basic Science–Health Connection
Drug addiction is a complex brain disease. Preventing drug abuse and addiction and treating the disease effectively require understanding the biological, genetic, social, psychological, and environmental factors that predispose individuals to drug addiction.
Individuals make choices to begin using drugs. Some people begin using drugs to relieve a medical condition and then continue to use the drugs after the medical need is over. Children or teens who are depressed or who have another psychiatric disorder sometimes begin using illicit drugs in an attempt to self-medicate. Other people begin taking drugs to feel pleasure, to escape the pressures of life, or to alter their view of reality. This voluntary initiation into the world of addictive drugs has strongly influenced society's view of drug abuse and drug addiction and their treatment.

When does drug abuse become drug addiction? It rarely happens with the first use of a drug. Drug abuse and drug addiction can be thought of as points along a continuum. Any use of a mind-altering drug or the inappropriate use of medication (either prescription or over-the-counter drugs) is drug abuse, but the point when drug abuse becomes drug addiction is less clear. Different people may reach the point of addiction at different stages. Scientists continue to investigate the factors that contribute to the transition to drug addiction.

Figure 4.1: The continuum of drug abuse and addiction.

Drug addiction is defined as the continued compulsive use of drugs despite adverse health or social consequences.\(^1\) Drug-addicted people have lost control of their drug use. Individuals who are addicted to drugs often become isolated from family or friends, have difficulty at work or school, may commit crimes, and become involved with the criminal justice system. For a person addicted to drugs, continuing to take them becomes the primary focus in life.

Certain drugs, including opioids and alcohol, cause strong physical reactions in the body when drug use stops. When a person addicted to heroin stops taking heroin, he or she can experience a variety of symptoms ranging from watery eyes and a runny nose to irritability and loss of appetite and then diarrhea, shivering, sweating, abdominal cramps, increased sensitivity to pain, and sleep problems.\(^2\) In general, withdrawal from heroin makes people feel miserable. Withdrawal from alcohol can cause serious effects such as seizures and even death. Withdrawal from other drugs, such as cocaine and amphetamines, does not lead to strong physical reactions, but it may make the person feel depressed or lethargic. For most drugs, physical withdrawal symptoms can usually be controlled effectively with medications. Even though withdrawal from some drugs does not cause the person abusing them to have physical reactions, stopping drug use is difficult because of the changes the drugs have caused in the brain. Once the drugs stop, the person will have **cravings**, or intense desire for the drugs.\(^3\) Craving arises from the brain's need to maintain a state of homeostasis that now relies on the presence of the drug. A person may experience cravings at any stage of drug abuse or addiction, even early...
in the experimentation phase of drug abuse. Cravings have a physical basis in the brain. Using PET imaging, scientists have shown that just seeing images of drug paraphernalia can stimulate the amygdala (part of the brain involved in emotional memory) in an addicted person.4

Drugs of addiction do not merely cause short-term changes in an individual's cognitive skill and behavior. A drug “high” lasts a short time, ranging from less than an hour to 12 hours, depending on the drug, dose, and route of administration. The changes in the brain that result from continued drug use, however, can last a long time. Scientists believe that some of these changes disappear when drug use stops; some disappear within a short time after drug use stops, and other changes are potentially permanent. One of the first changes in the brain that may occur in response to repeated drug abuse is tolerance. Tolerance develops when a person needs increasing doses of a drug to achieve the same high or “rush” that previously resulted from a lower dose of the drug. Two primary mechanisms underlie the development of tolerance.3 First, the body may become more efficient at metabolizing the drug, thereby reducing the amount that enters the brain. Second, the cells of the body and brain may become more resistant to the effect of the drug. For example, after continued cocaine use, neurons decrease the number of dopamine receptors, which results in decreasing cocaine's stimulatory effect. Opioids, on the other hand, do not cause a change in the number of receptors. Instead the opioid receptors become less efficient in activating associated cellular processes, thus reducing the effects of the opioids.

Drugs can cause other long-term changes in the anatomy and physiology of the brain's neurons. Alcohol, methamphetamine, and MDMA (ecstasy) have been shown to be neurotoxic in animal studies.3 Unlike other types of cells in the body, neurons in many parts of the brain have little or no capacity to regenerate. (Recent studies have shown that the adult human brain can generate new neurons in the hippocampus, a part of the brain important for learning and memory.5 Other parts of the brain have not been shown to have this ability.) Alcohol kills neurons in a part of the brain that helps create new memories (the hippocampus and mammillary bodies). If those neurons die, the capacity for learning decreases. Methamphetamine is toxic to dopamine-containing neurons in animals and possibly in humans as well.6 MDMA has been shown in animal studies to damage the axon terminals of neurons that produce another neurotransmitter called serotonin.7 In addition to neurotoxic effects, drugs can significantly alter the activity of the brain. PET scans of people addicted to cocaine show that the metabolism of glucose, the primary fuel for cells, is drastically reduced in the brain; this decrease in metabolism can last for many months after drug abuse stops.8

In addition to the functional and anatomical changes in the brain, drug abuse puts people at higher risk for other health problems. For example, inhalant abuse can lead to disruption of heart rhythms, and snorting cocaine can lead to ulcerations in the mucous membranes of the nose. In addition, injection drug users (IDUs) are at higher risk of contracting HIV through the sharing of potentially contaminated needles. Similarly,
hepatitis B and hepatitis C are much more common among drug addicts than the general population. Tuberculosis is another concern. Drug abuse and addiction also are contributing factors in motor vehicle accidents.

Figure 4.2: Photographs of serotonin axons in the cerebral cortex of nonhuman primates labeled with a fluorescent marker. The number of serotonin-labeled axons is dramatically reduced in the cerebral cortex at 2 weeks (B) and 18 months (C) after the last drug exposure. The brain of the control animal that did not receive MDMA (A) shows the dense network of labeled axons. Images E and F show changes caused by MDMA use on a different brain region, the hypothalamus. The control showing the hypothalamus in the absence of MDMA is shown in D. Photographs courtesy of G.A. Ricaurte, with the permission of the Journal of Neuroscience.

Genetic, Behavioral, and Environmental Influences on Drug Addiction

Drug addiction is not simply continuous drug abuse. Many more individuals will try an addictive drug than will become addicted. Most people know of situations in which two people use the same amount of alcohol or tobacco, but have very different responses to them. Environmental, social, behavioral, and genetic factors also contribute to the development of drug addiction. Stress can increase the susceptibility to addiction.
Scientists continue to investigate the factors that place one individual at greater risk of becoming addicted than another individual with a similar pattern of drug use. Individuals who have developed strong coping skills to deal with life's pressures have less risk of becoming addicted to drugs. The younger a person is when he or she begins using drugs, the more likely he or she is to become addicted. This may be true because younger individuals have not developed the coping skills necessary to deal with life's ups and downs. Additionally, the frontal cortex of the adolescent brain isn't fully mature until age 24. This area of the brain is responsible for judgment and for inhibiting impulsivity and risk-taking behavior. In addition, genetic factors probably influence who engages in higher-risk behaviors.

The context in which a person uses an addictive drug greatly contributes to its behavioral effects and the risk of abuse and addiction. For example, some cancer patients take relatively large doses of morphine for extended periods to control pain without becoming addicted. It has been proposed that addiction is rare in these patients because, in contrast to addicted individuals, these patients are motivated not by a compulsive urge to seek a high but by a physiologic need to ease their pain and improve their quality of life.

Medical Uses of Addictive Drugs

It is well known that otherwise safe medications can turn harmful if abused or taken without prescription or supervision. The other side of this coin is that many drugs of abuse are themselves, or have been found to contain, active ingredients that can be therapeutic. A good example is morphine. During the Civil War, doctors gave morphine to wounded soldiers to relieve the pain of injuries. Doctors didn’t realize how addictive injected morphine was until many soldiers became addicted to the drug. Morphine addiction became known as “soldiers’ disease.” Today, morphine is a valuable medicine to relieve pain when administered with the appropriate medical supervision. Patients in hospitals receive morphine to ease their pain after surgery and during cancer and burn treatment. Very few of these patients become addicted to morphine even though they may take it for extended periods of time.

Another drug that has received considerable attention for its potential medical benefits is marijuana. Television and newspaper reports periodically present stories on the use of marijuana by terminal cancer or AIDS patients to ease their discomfort and pain. Following up on such anecdotal evidence, several scientific studies have been able to corroborate at least some of the claims about marijuana’s beneficial effects on appetite, nausea, and certain types of pain. However, marijuana’s addictive properties and its usual delivery by smoke inhalation—which exposes the lungs to many toxic chemicals—make it an unappealing candidate for medications development. Rather, it is likely that our understanding of the biology of marijuana’s active ingredients, such as tetrahydrocannabinol (THC), will lead to improved medications for a variety of conditions, ranging from obesity and addiction to neuropathic pain in multiple sclerosis (MS) patients, chronic pain in advanced cancer patients, nausea, and wasting syndrome.
The risk of becoming addicted to prescription pain medications is minimal in patients who are treated on a short-term basis; however, the risk for those with chronic pain is less well understood. Some studies have shown that those most vulnerable to becoming addicted to prescription pain medications have a history of psychological disorders, prior substance abuse problems, or a family history of these disorders. Pain management for patients who have substance abuse disorders is particularly challenging for the medical profession. However, these patients can still be successfully treated with opioid pain medications, although they may need to be admitted to a treatment or recovery program and monitored closely if controlled substances are prescribed for pain.

In the 1970s, news media reported the use of marijuana and heroin by soldiers who were serving in Vietnam. Combat stress, the easy availability of drugs, and the relaxation of taboos against drug use at the time all contributed to the problem. Although many soldiers did have drug problems while in Vietnam, 95 percent were not addicted to drugs after they returned to the United States. This illustrates the profound effect that environmental circumstances can have on drug taking and drug addiction.

In addition, scientists are working to identify genetic factors that contribute to drug abuse and addiction. Studies of identical twins indicate that as much as half of an individual’s risk of becoming addicted to nicotine, alcohol, or other drugs depends on his or her genes. Recent technical advances in DNA analysis have enabled researchers to untangle complex genetic interactions by examining a person’s entire genome at once. A series of studies has identified a certain variant in the gene for a nicotinic receptor subunit that more than doubles the risk for addiction among smokers, as well as increasing their vulnerability to lung cancer and peripheral arterial disease.

Animals as Research Models

Why do scientists study the brains of laboratory animals? Scientists use animals in research studies because the use of humans is either impossible or unethical. For example, when scientists investigate the effects of drugs of abuse on brain function, either the question they are asking cannot be answered in a living human or it would be inappropriate to give a person the drugs.

The use of animals as subjects in scientific research has contributed to many important advances in scientific and medical knowledge. Scientists must analyze the goals of their experiments in order to select an animal species that is appropriate. Scientists often use fruit flies (*Drosophila melanogaster*) when they want to learn more about genetics. However, fruit flies are not a very good model if a scientist is investigating muscle physiology or behavior; a mouse may be a better model for those experiments. Although scientists strive to develop nonanimal models for research, these models often do not duplicate the complex animal or human body. Continued progress toward a more complete understanding of human and animal health depends on the use of living animals.
Guidelines for the Use of Animals in Scientific Research

Scientists who use animals as research subjects must abide by federal policies that govern the use and care of vertebrate animals in research. The Public Health Service established a policy that dictates specific requirements for animal care and use in research. This policy conforms to the Health Research Extension Act of 1985 (Public Law 99-158) and applies to all research, research training, biological testing, and other activities that involve animals. The principles for using and caring for vertebrate animals in research and testing are as follows:

- The transportation, care, and use of animals should be in accordance with the Animal Welfare Act and other applicable federal laws, guidelines, and policies.

- Procedures involving animals should be designed with consideration of their relevance to human or animal health, the advancement of knowledge, or the good of society.

- The animals selected should be of an appropriate species and quality and the minimum number required to obtain valid results. Methods such as mathematical models, computer simulation, and in vitro biological systems should be considered.

- Procedures should minimize discomfort, distress, and pain to the animals.

- Procedures that may cause more than momentary or slight pain should be performed with appropriate sedation, analgesia, or anesthesia.

- Animals that would suffer severe or chronic pain or distress that cannot be relieved should be painlessly killed.

- The living conditions of animals should be appropriate for the species. The housing, feeding, and care of animals must be directed by a veterinarian or a trained, experienced scientist.

- Investigators who work with animals must be appropriately qualified and trained for conducting procedures on living animals.

- Exceptions to any of these principles must be reviewed and approved by an appropriate committee prior to the procedure.

- An Institutional Animal Care and Use Committee (IACUC) oversees all animal use in each institution where animal research is conducted. The IACUC must give approval for the research plan and species to be used. IACUCs include both scientists and nonscientists from outside the institution. Nonscientists are often representatives of humane organizations.
In Advance

Web-Based Activities

<table>
<thead>
<tr>
<th>Activity</th>
<th>Web Component?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Photocopies

<table>
<thead>
<tr>
<th>For the class</th>
<th>For each student</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 transparency of Master 4.4, Playing the Game</td>
<td>1 copy of Master 4.1, Data for Rat Self-administration Experiment</td>
</tr>
<tr>
<td>1 transparency of Master 4.5, Who Is Addicted?</td>
<td>1 copy of Master 4.2, Worksheet for Rat Experiment Data</td>
</tr>
<tr>
<td>1 transparency of Master 4.6, Long-Term Effects of Drugs on the Brain (only if not using the Web-based version)</td>
<td>1 copy of Master 4.3, Evaluating the Experiment</td>
</tr>
</tbody>
</table>

Materials

<table>
<thead>
<tr>
<th>Activity</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity 1</td>
<td>none</td>
</tr>
<tr>
<td>Activity 2</td>
<td>colored pencils, overhead projector, transparency</td>
</tr>
<tr>
<td>Activity 3</td>
<td>playing cards (one deck for each group of 3 students; see Preparation section), overhead projector</td>
</tr>
<tr>
<td>Activity 4</td>
<td>overhead projector</td>
</tr>
<tr>
<td>Activity 5</td>
<td>computer</td>
</tr>
</tbody>
</table>

Preparation

Gather decks of playing cards for use in Activity 3. Each group of three students can share one deck of cards. Separate the face cards (jacks, queens, and kings) and place them in one pile. Place the aces and number cards in another pile.

Arrange for students to have access to computers for viewing the minidocumentary online in Activity 5.
Activity 1: How Does Drug Abuse Begin?

1. Begin the activity by holding a class discussion. Ask students, “What is a drug?” Write their answers on the chalkboard or on an overhead transparency. Give students the opportunity to present differing views.

Students will respond with a variety of answers. Some will give examples of illegal drugs, such as marijuana or cocaine, others may give the names of prescription medications. If so, prompt students to think about a definition for the word drug. Some students will describe a drug either as an illegal substance that harms a person’s health or as a chemical that a person takes to treat a disease or illness. At this point, based on students’ knowledge, both definitions are correct.

Several terms will be introduced in this lesson. It is very important to use these terms according to the definitions provided.

2. Write the following definitions for drug and medication on the board or transparency and inform students that, for this discussion, you will use the terms according to the following definitions.

- A medication is a drug that is used to treat an illness or disease according to established medical guidelines.
- A drug is a chemical compound or substance that can alter the structure and function of the body. Psychoactive drugs affect the function of the brain, and some of these may be illegal to use and possess.

3. If the students didn’t do this in the previous question, ask them to consider examples for both medications and drugs. List each response in the proper category as a medication or a drug.

According to these definitions, all medications are drugs, but not all drugs are medications. This module uses the word “drug” to refer to psychoactive drugs, or drugs of abuse. Drug abuse refers to the use of illicit drugs or to the inappropriate use of a legal drug or substance, such as alcohol, nicotine, prescription drugs, or inhalants.

Societal and political factors sometimes influence into which category a substance falls. Alcohol and nicotine (tobacco) are drugs that are illegal to use and possess if the individual is below legal age, but not for adults to possess and use responsibly. Also, inhalants (paints, glues, and sprays, for example) are not illegal to possess when they are used for their intended purposes. However, they are drugs when used improperly to alter brain function.
Some students will raise the idea that medications can also be drugs if they are used inappropriately. For example, overuse of a prescription medication, such as a sedative, is inappropriate and wouldn't be considered a medication in that case. Alternatively, students may indicate that morphine is an illegal drug when used without medical supervision, but is a valuable medicine when used appropriately in a hospital, or at home, to relieve pain associated with various diseases. Students may also propose that marijuana can be a medication to relieve the pain that accompanies various diseases. (In some states, marijuana is legal as a medication, but is illegal according to federal law.) If students bring this up, point out to them that scientists need to continue studying marijuana or its active ingredients to determine if it may be effective as a medicine. Marijuana contains hundreds of chemical compounds; the effects of most of these compounds in the body are unknown. Marijuana also poses many problems outside of the brain—for the lungs, for example, because it is usually smoked. Use this as an opportunity to inform students that scientific research is being done to determine whether marijuana or other cannabinoid-based medications are more effective than other medicines (see the Background Information section).

4. Ask students to respond to the question, Why do people start abusing drugs?

Students may provide a wide range of answers to this question including peer pressure, experimentation, boredom, or fun. Some students may also respond that people take drugs to escape from life's pressures.

Activity 2: Drug Abuse Is Voluntary; Addiction Is Compulsive

1. For this activity, students will work in groups of four. Before you have students divide into their small groups, set the stage for the activity. Tell students they will be analyzing data from experiments using rats. For the experiments, each rat was placed in a cage with two levers that the rat could press. If the rat pressed the food lever, a pellet of food was released. If the stimulus lever was pressed, the rat received an injection or an electrical stimulus.

Students may ask what substance was injected in response to the press of the stimulus lever. Tell students that the answer to that question will be revealed during the activity.
2. Give each student a copy of Masters 4.1, *Data for Rat Self-administration Experiment*, and 4.2, *Worksheet for Rat Experiment Data*. Each student will graph on Master 4.2 the data for only one of the rats. Instruct the teams to decide which member will graph the data for Rats A, B, C, and D. The students will plot the total number of times that the rat presses the stimulus lever vs. time and the total number of times that the rat presses the food lever vs. time.

 The graph of the data for each rat will have two lines, one for the stimulus lever and one for the food lever. Students can use a different color of pencil for plotting each set of data, or they can use a solid line and a dashed line to distinguish between the two graph lines.

3. After students have completed their graphs, give each student a copy of Master 4.3, *Evaluating the Experiment*. Each student should share his or her graph with the other members of the group. Group members then discuss the similarities and differences among the rats’ responses and answer the questions on Master 4.3.

4. When the groups are finished answering the questions, hold a class discussion to ensure that each group has come to the appropriate conclusions.

Sample Answers to Questions on Master 4.3

Question 1. Why do the rats press a lever the first time?

The rats initially press a lever while they are exploring the cage. A rat may even press the lever by accident. Whether a rat presses the food lever or the stimulus lever first is usually random.
Question 2. Compare the lever-pressing behaviors of the four different rats. Which rat pressed the stimulus lever the most? Which one pressed the stimulus lever the least? Which rat pressed the food lever the most? Which one pressed the food lever the least?

Rats A and C pressed the stimulus lever about the same number of times and many more times than either Rat B or Rat D. Rats B and D did not press the stimulus lever very many times, but they pressed the food lever more times than Rats A and C did. Overall, Rats A and C behaved similarly and Rats B and D behaved similarly.

Question 3. Rat A was injected with cocaine each time it pressed the stimulus lever. Can you use this fact to explain why Rat A behaved the way it did?

The cocaine activated the reward system in the brain and caused the rat to continue its stimulus-lever-pressing behavior. If necessary, remind students that the reward system is the part of the brain stimulated by drugs to cause feelings of pleasure.

Question 4. Based on the data you analyzed, do you think Rat B was injected with cocaine when it pressed the stimulus lever? From what you have learned so far in this unit, do you think Rat B was injected with a different addictive drug when it pressed the stimulus lever? Why?

It appears that Rat B was not injected with cocaine when it pressed the stimulus lever because its behavior was very different from Rat A. If Rat B was injected with cocaine or another addictive drug, it should display behavior similar to Rat A.

(Rat B actually received a saline injection when it pressed the stimulus lever.)

Question 5. Do you think Rat C received cocaine when it pressed the stimulus lever? Why?

It is possible that Rat C received cocaine when it pressed the stimulus lever because its behavior was very similar to that of Rat A. However, you cannot be sure that it was cocaine.

Question 6. Rat C did not receive an injection of cocaine when it pressed the stimulus lever. When Rat C pressed the stimulus lever, it received a mild electrical stimulation in the brain. On the basis of what you have learned, can you predict what part of the brain was stimulated?

The reward system (ventral tegmental area or nucleus accumbens) is the part of the brain stimulated. Stimulation in that area of the brain caused the rat to continue pressing the stimulus lever.
Question 7. Rat D also received a mild electrical stimulation in the brain when it pressed the stimulus lever. Do you think the same part of the brain was stimulated in Rat D as was stimulated in Rat C? Why?

Rat D did not receive an electrical stimulation in the same part of the brain that was stimulated in Rat C. If the same part of the brain, the reward system, was stimulated, Rat D should behave similarly to Rat C.

(Rat D received an electrical shock in the cerebellum, which is not part of the reward pathway.)

Question 8. Why did Rats A and C press the stimulus lever more than the food lever?

Rats A and C received a greater “reward” when they pressed the stimulus lever than they did when they pressed the food lever.

Question 9. Why did Rats B and D press the food lever more than the stimulus lever?

Rats B and D received greater “reward” when they pressed the food lever than they did when they pressed the stimulus lever.

Question 10. Why did the scientists who conducted this experiment include Rats B, C, and D? How did the data from those rats help scientists understand more about how cocaine acts in the brain?

Rats B, C, and D were used as controls in this experiment. Rat B received a saline injection after pressing the stimulus lever. (The cocaine that Rat A received was dissolved in a saline solution.) Because Rat B’s behavior differed from Rat A’s behavior, this suggests that the cocaine that Rat A received caused the frequent stimulus-lever-pressing behavior. Because both rats had a canula inserted to deliver the solution, the process of inserting the canula is not sufficient to cause Rat A’s behavior.

The data from Rat C reveal that electrical stimulation of the VTA elicits behavior similar to that caused by cocaine injection. Because cocaine is known to act on neurons in the VTA, these data reinforce the findings from Rat A that the cocaine acting on the VTA neurons causes the frequent stimulus-lever-pressing behavior.

Rat D received electrical stimulation in the cerebellum after pressing the stimulus lever. The cerebellum is not part of the reward system. These data show that stimulation to a discrete brain area, the reward system, causes Rat C’s behavior. Inserting the electrode into other areas of the brain is not sufficient to elicit the rapid stimulus-lever-pressing behavior observed in Rat C.
Question 11. Do you think that Rats A and C will stop pressing the stimulus lever if they continue to receive the same stimulation each time they press it? Why?

On basis of the data, it does not seem likely that Rats A and C would stop pressing the stimulus lever because the number of times it is pressed continues to increase within each five-minute period. Students may notice that Rat A pressed the stimulus lever more times during the last five-minute period of the experiment than it did during the first five-minute period.

Question 12. On the basis of what you learned from these data, what might this investigation tell you about drug use by humans? Explain your view.

The data from the rat experiment show that the use of addictive drugs is reinforcing. Rats who are given cocaine want more cocaine. Because rats are mammals just as humans are and many of their organs function in ways similar to those in humans, the data suggest that drug use in humans is likely to be reinforcing as well: humans who take drugs will probably want to continue taking drugs.

5. Have students consider the question, Why do humans continue to abuse drugs?

People who are addicted to drugs continue to take drugs despite negative consequences. They know that their family, social, or career interactions are disrupted by their drug abuse, but they cannot stop. Drug-taking becomes compulsive. Rats A and C became conditioned to the activation of the reward system by the administration of cocaine or electrical stimulation in the VTA in response to a lever press. Those rats continued to press the stimulus bar in their cages and ignored the food lever. The cocaine or electrical stimulation in the VTA was a bigger reward for the rats than was the food. In humans, drugs cause a compulsive need for more drugs.

6. Write the following definition of addiction on the chalkboard or overhead transparency.

- Addiction is a chronic, relapsing brain disease characterized by compulsive drug-taking despite adverse health, social, or legal consequences.

7. Ask students to consider what they learned from the data concerning the continued use of cocaine by Rat A and the continued stimulation of the reward pathway in Rat C. Did Rat A and Rat C experience any adverse effects from their treatments? What adverse consequences do drug-addicted humans experience?
Although it is not appropriate to refer to the rats as addicted to cocaine, those rats would have experienced adverse effects if the experiment continued for a long time. If the experiment continued and the rats continued to push only the stimulus lever, the lack of food and water would lead to adverse health consequences. If the scientists did not stop the experiment, the rats would have continued to press the stimulus lever until they died from a cocaine overdose.

Humans addicted to drugs are most concerned with their next drug use. Because of this, they often eat little or poorly and consequently suffer the adverse health consequences of poor nutrition.

8. Ask students to consider the distinction between drug abuse and drug addiction in humans.

- When does abuse become addiction?
- What causes abuse to become addiction?
- Does the change from abuse to addiction occur at the same level (amount of drug taken, duration of drug abuse) of drug abuse for different individuals?

Students should be able to use the previously given definition of addiction and the results of the cocaine self-administration experiments with rats to differentiate between drug abuse and addiction. Abuse is voluntary; addiction is the continued compulsive drug use despite adverse health or social consequences.

Scientists do not know what causes a person who is abusing drugs to become addicted. Continuing research is attempting to answer this question.

Activity 3: When Does Abuse Become Addiction?

Note: The power of this activity lies in the discussion it elicits. Without the discussion, the activity could allow misconceptions to persist. If you don't have enough class time for discussion, please skip this activity.

1. Divide the class into groups of three students. Give each group a deck of cards that have been divided into two piles. Tell the students that the small pile contains the face cards and the larger pile has the aces and number cards.

2. Display a transparency of Master 4.4, Playing the Game, showing the instructions for the game. Have students play through the game. Each student in the group will play individually, but the group members share the deck of cards.
3. When all the groups have finished the game, discuss the game and the results of the game with them. The value of this activity lies in the discussion and questions that it may generate. The following sample questions can guide the discussion.

- How many choice cards did each person pick?

Students will draw different numbers of cards before they decide to stop.

- How many people equalled or went over the value of the switch card?

Some students will decide to play it safe, whereas other students will risk going over the transition, or switch, value.

- How does this game relate to drug abuse and drug addiction?

This game relates to abuse and addiction in that each person who continues to abuse drugs will reach some point that, if surpassed, will change the person (and the person's brain) from abusing drugs to being addicted to them. Each person has risk factors, and each person can make choices about abusing drugs.

- What does the transition, or switch, card mean in regard to drug addiction?

Drug abuse causes changes in the brain that lead to the compulsive use of drugs despite negative consequences. Scientists do not know what factors control the transition from drug abuse to addiction.
• Is everyone’s transition, or switch, level the same?

In the card game, students choose one of three cards, each assigned an arbitrary value, as their switch card. In life, a person does not know when he or she will reach the point where drug abuse becomes drug addiction. For some people, that change will occur earlier in their drug abuse, while other people will abuse drugs extensively before they become addicted.

• What does the risk card mean?

The risk card symbolizes that there are factors that influence the outcome. An individual does not know what all the risks are or how great their influence is.

• Is everyone’s risk card the same?

Different students will have different risk cards. In life, people who abuse drugs have different risks of becoming addicted.

• Why is the risk card face down?

The risk card is face down because a person often does not know the magnitude of the risk factors that he or she carries. For example, a person may know that genes play a role in determining whether a person will become addicted, but a person doesn’t know whether he or she carries the genes that will place them at risk for addiction or to what degree the gene’s influence increases the risk.

• What factors influence a person’s risk of becoming addicted to drugs?

Many factors influence whether a person becomes addicted to drugs. Some of these include genetics, family influence, influence of friends, age at which drug abuse begins (a person who begins using drugs early in life is more likely to become addicted), context of drug use, and the development of coping skills.

• What do the choice cards represent?

Each choice card in this model represents an episode of drug use.

Students likely will try to assign meaning to the numbers on the choice cards. For example, they may equate a 2 with drinking a low-alcohol beer and a 10 with heroin injection. These correlations are difficult to make with any accuracy. For example, a person may smoke a small amount of marijuana believing that it contains a low dose of THC. If that marijuana is of a potent strain that contains a high level of THC, the individual could receive a higher dose than if he or she smoked a larger dose of a less potent strain of marijuana.
Like most models, this one has imperfections. The discussion that this issue may generate among students can be valuable because it causes them to question drug abuse.

- If a total score that equals or goes over the switch value indicates addiction, did anyone become addicted to drugs with the first drug use?

The point values in the game have been assigned so that the player cannot reach the switch value after drawing one choice card. This correlates with addiction; becoming addicted with one episode of drug abuse rarely happens.

Important note: This is true with the outcome of the game being *drug addiction* if the switch value is reached. This is not true if the designated outcome is death if the switch value is reached. A person can die from the first episode of drug abuse. After one use, drugs do not change the brain sufficiently to cause addiction. However, drugs can affect other body systems and cause them to fail. See Step 9 (on page 111) for a modification of the game to address this. Also, although a person does not become addicted to drugs after one use, one episode can cause some changes to start occurring in the brain. For example, one use of crack cocaine can cause a person to experience cravings for the drug.

Figure 4.5: Sample card hand #1. The player had a moderate switch value (the switch card is a queen). The student elected to draw six choice cards totaling 33 points before finding out that the risk card had a value of 5. The 38-point total put the score over the switch value (35), signifying addiction.
Figure 4.6: Sample card hand #2. The player had a higher switch card (king = 45 points) and elected to draw eight choice cards totaling 36 points. Because the risk card was low (a 2), the 38-point total was still below the switch value, signifying drug abuse.

Figure 4.7: Sample card hand #3. The player elected to draw only one choice card, a 5, to ensure that the total of risk (which turned out to be a 4) and choice cards remained below the switch value of 25 points (jack = 25 points).

Figure 4.8: Sample card hand #4. The player drew a low switch card (a jack = 25 points) and a high risk card (a 10). Because the choice cards have high point values, the total of just two cards totaled more than the switch value, signifying drug addiction.
4. Have the students play the game again now that they can relate it to the issues of drug abuse and drug addiction.

5. Ask students if they played the game any differently this time. Did they make different choices?

Some students will continue to risk drawing more choice cards and get closer to the switch value. Other students may elect not to draw any choice cards.

Some students might bring up questions relating to a hand containing a high switch card, a low risk card, and some low choice cards so that they can continue to draw more cards. Students may feel that this scenario would lead them to continue to experiment with drugs. You can respond by asking them what choices they would make if they drew a low switch card and a high risk card. (Perhaps the numbers on the cards are lower or higher than the assigned values. For example, what if the switch card had a value of 22 points and the risk card had a value of 12 points? Would this change the decision about drawing additional cards?) This scenario leads into the next step of the activity, in which students consider that the switch point really is unknown.

6. Discuss the idea of the switch card with students. Does anyone really know at what point in drug abuse the brain changes and the person shifts from abusing to being addicted to a drug? How could you modify the card game to account for this?

In life, a person does not know when he or she will reach the point at which drug abuse becomes drug addiction. To reflect this in the card game, students can play the game leaving the switch card face down.

7. When the students play the game this time, they will not look at the switch card. Have them keep the switch card face down and continue the game as before.

8. Continue the discussion of the game and its relation to drug abuse and drug addiction.

The main points that students should learn through this activity are

- Drug abuse involves choice.
- The point at which a person’s brain is changed and drug abuse becomes drug addiction is different and unknown for each individual.
- Everyone has risk factors.
- A person does not become addicted to drugs after one episode of abuse.
9. (Optional) A person does not become addicted to drugs after one episode of abuse, but a person can die as a result of one episode of drug abuse. The drugs can act on the brain or other body systems with a lethal outcome, such as by suppressing respiration. If you want to modify the game to add this scenario, insert the jokers into each pile of choice cards and have the students play the game a fourth time. If a student draws a joker, the game is over for that student.

If you decide to do this optional modification to the game, make sure that students understand that the joker does not indicate addiction. The joker would, perhaps, represent a batch of drugs that contain a lethal contaminant that would cause some body organ to fail and, thus, cause the person using them to die. Another person, for example, takes a large enough dose of opioids to completely inhibit the neurons in the brain that control respiration; those neurons no longer stimulate the lungs to contract, causing death. Sometimes a drug can produce a fatal response for unknown reasons; it could be due to a mutation in a gene that reduces the body's ability to metabolize a drug, leading to an increased, possibly toxic, level of the drug in the body.

Activity 4: Environmental, Behavioral, and Social Influences on Drug Abuse and Addiction

Note to teachers: This activity, as described in the following steps, is designed as a class discussion. An alternative approach is to have individual students write their answers to the questions and then discuss the questions as a class.

1. Display a transparency of Master 4.5, Who Is Addicted?, showing only the top section (to the first horizontal line). Ask students to answer the question.

Students may respond differently to the question about who is addicted to morphine. At this stage, any answer is acceptable if the student can explain the reasoning underlying his or her answer. Some students will say that Chris is addicted because of the higher dose of morphine being taken over a longer period of time. Some students will say Pat because this could be a larger dose than what Chris is taking (if Chris is at 50 mg per day). Students could also believe that both individuals are addicted because of their continued drug abuse. Conversely, students could respond that possibly neither one is addicted and more information is needed before a judgment could be made.

2. Reveal the next section on Master 4.5 (to the next horizontal line). Again have students answer the question and discuss the responses.

Students may respond in a variety of ways. Answers could involve aspects of genetics, dose, or even random chance.
The Brain: Understanding Neurobiology Through the Study of Addiction

3. Reveal the remaining section of Master 4.5 and have students read the case studies.

4. Discuss the cases with the class. Use the following questions to guide the discussion.

- Why did these two individuals begin taking morphine and then continue to take morphine?

Pat began abusing morphine basically for social reasons. Chris began taking morphine for medical reasons.

- What are the differences in how Chris and Pat take morphine?

Pat takes an injection of morphine one time each day. Chris also receives morphine through injection, but he receives a dose many times each day.

- How may these differences have influenced whether addiction develops?

Although Chris receives a higher total dose of morphine during a day, each single injection is a smaller dose. The smaller single dose does not lead to the same high that results from a larger dose. Perhaps the fact that Chris does not feel the euphoria when he receives the morphine is important in keeping him from being addicted. (It is acceptable for students to propose answers here even if they cannot be sure.)

- Is a larger dose of a drug the only factor to consider when thinking about the causes of drug addiction? Explain your answer based on the case studies.

No, because Chris took a larger dose and did not become addicted.

- Is the length of time that someone has been taking drugs enough to determine whether addiction will develop? Explain your answer based on the case studies.

No, because Chris took morphine for a longer period of time and did not become addicted while Pat took morphine for a shorter period of time and did become addicted.

- What factors other than the amount (dose) of the drug taken and the period of time for which the drug is taken may contribute to addiction?

The expectation of feeling a rush may be a factor. A person getting morphine in a hospital would not be taking morphine to get that feeling. The context of drug (medication) use influences whether a person becomes addicted. Pat's use of drugs to escape problems contributed to the development of drug addiction.
The cases should reveal to the students that a high dose of a drug is not enough to cause addiction. The behaviors and motivations for taking drugs are important factors in the development of addiction. The addicted street person was using drugs with the expectation of a rush, or high, and trying to escape life. The patient was taking drugs without the expectation of a high. The patient experiencing pain uses drugs in order to function normally. Scientists do not completely understand why pain patients do not become addicted after drug use, but the statistics clearly show that these individuals are at very low risk of becoming addicted.

You may also want to discuss the case of Vietnam veterans with students. For many years, the media portrayed Vietnam veterans as hopelessly drug-addicted individuals. Although drug addiction was a problem for some veterans while in Vietnam, the vast majority of those veterans have had no problems with drug addiction since returning to the United States. They may have started using drugs (and subsequently became addicted) to relieve the stress of combat, to rebel against society, or even to relieve boredom, but once they were back in a “normal” environment, they were able to function without drugs.

Activity 5: Long-Term Effects of Drug Abuse and Addiction

Having students view the minidocumentary on the long-term effects of drugs on the brain is the strongly preferred approach for this activity. If the Internet is not available, follow the procedure for the alternate version of the activity (on page 114).

For classes using the Web version of this activity.

1. Have students view the minidocumentary, Long-Term Effects of Drugs on the Brain, online.

 To view the minidocumentary, which takes about five minutes, go to the supplement’s Web site. From the activities menu, select Lesson 4—Drug Abuse and Addiction.

2. After viewing the minidocumentary, ask students to write brief answers to the following questions.

 • What was the most surprising thing you learned about the effect of drugs?
 • What makes this fact surprising to you?
 • On the basis of what you have learned through the rat experiment analysis, the card game, and the minidocumentary, would you say that drug addiction is a disease? Justify your answer.

Students should be encouraged to relate what they learned in Activities 1 through 4 to what they learned from the minidocumentary.
Drug addiction is a disease that causes physical and functional changes in the brain. This is similar to other diseases in which a part of the body does not function properly.

Encourage students to learn about how drugs affect other body systems by doing library or Internet searches.

Because the focus of this unit is the brain, the curriculum supplement does not address how drugs act on other parts of the body. However, a great deal of additional information is available online. See the section Additional Resources for Teachers for some informative Web sites.

The following procedure is for classes using the print version of the activity.

1. Give each student a copy of Master 4.6. Instruct students to read the handout Long-Term Effects of Drugs on the Brain and answer the questions.

 After students finish reading and answering the questions, discuss the responses as a class.

Sample Answers to Questions on Master 4.6

Question 1. What are some of the ways that drugs cause long-term changes in the brain?

The continued use of drugs may cause the brain to become resistant to the effects of the drug (tolerance). Some drugs, such as alcohol, methamphetamine, and MDMA, are neurotoxic; that is, they can damage or kill brain cells. Cocaine and amphetamine can cause the activity level of the brain to decrease for a long period of time after drug use is stopped.

Question 2. How does the brain adapt to the presence of drugs?

The brain adapts to the presence of drugs through various alterations in cellular, molecular, and genetic processes that affect its function. The decrease in the number of dopamine receptors in the reward areas is one example of a brain adaptation. Changes in the brain can lead to the development of tolerance—a person needing more of a drug to achieve the desired effect—and to cravings for the drug when drug use has stopped.
Question 3. How may the abuse of drugs relate to the plasticity of the brain?

Plasticity means that the brain can modify connections (synapses) in response to experiences. Drugs that damage or kill neurons can decrease the plasticity of the brain because neurons are not present to form new connections and because existing connections are lost. Drugs also hijack the learning and memory systems of the brain so that cues (people, places, or things) that are associated with the drug experience become powerful motivators of craving and drug use. In fact, addiction is sometimes described as a disease of learning and memory.

Question 4. What are some problems that scientists have when they investigate the effects of drugs on the brain?

Scientists have difficulty investigating the effects of drugs on the brain because many people who abuse drugs abuse more than one drug. Scientists must understand how each drug affects the brain and body because drugs taken in combination may have different effects. Also, many people who abuse drugs have other medical conditions that make it difficult for scientists to determine what effects are due to the drug and what effects are due to those conditions. Scientists also don't know what someone's brain was like before they used drugs. This makes it hard to determine whether drug use caused the changes or a vulnerability existed before drugs were used that made someone susceptible to addiction.

2. If students want to learn more about how drugs affect other parts of the body, encourage them to do library or Internet searches for additional information.

Because this unit focuses on the brain, it does not address how drugs act on other parts of the body. A great deal of information is available online. See the section Additional Resources for Teachers (page 143) for some informative Web sites.
Lesson 4 Organizer: WEB VERSION

<table>
<thead>
<tr>
<th>What the Teacher Does</th>
<th>Procedure Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity 1: How Does Drug Abuse Begin?</td>
<td></td>
</tr>
<tr>
<td>Ask the class, “What is a drug?” Write responses on the board or a transparency.</td>
<td>Page 99 Step 1</td>
</tr>
<tr>
<td>Allow differing views to be discussed.</td>
<td></td>
</tr>
<tr>
<td>Write the following definitions for drug and medication on the</td>
<td></td>
</tr>
<tr>
<td>board or transparency. Inform students that, for this discussion, you will use</td>
<td></td>
</tr>
<tr>
<td>the terms according to these definitions.</td>
<td></td>
</tr>
<tr>
<td>• A medication is a drug that is used to treat an illness or disease according</td>
<td></td>
</tr>
<tr>
<td>to established medical guidelines.</td>
<td></td>
</tr>
<tr>
<td>• A drug is a chemical compound or substance that can alter the structure and</td>
<td></td>
</tr>
<tr>
<td>function of the body. Psychoactive drugs affect the function of the brain, and some</td>
<td></td>
</tr>
<tr>
<td>of these may be illegal to use and possess.</td>
<td></td>
</tr>
<tr>
<td>Ask students to list examples of both medications and drugs.</td>
<td>Pages 99–100 Step 3</td>
</tr>
<tr>
<td>Continue the class discussion by asking, “Why do people start abusing drugs?”</td>
<td>Page 100 Step 4</td>
</tr>
<tr>
<td>Accept reasonable answers.</td>
<td></td>
</tr>
<tr>
<td>Activity 2: Drug Abuse Is Voluntary; Addiction Is Compulsive</td>
<td></td>
</tr>
<tr>
<td>Organize students into groups of four. Explain how the rats in the</td>
<td>Page 100 Step 1</td>
</tr>
<tr>
<td>experiment were in cages that had two levers. Depending on which lever the rat</td>
<td></td>
</tr>
<tr>
<td>pressed, it receives a food reward or either an injection or electrical stimulus.</td>
<td></td>
</tr>
<tr>
<td>Give each student a copy of Masters 4.1 and 4.2. Instruct groups to choose one rat’s</td>
<td>Page 101 Step 2</td>
</tr>
<tr>
<td>data to graph.</td>
<td>M</td>
</tr>
<tr>
<td>Give each student a copy of Master 4.3. Ask groups to compare the graphs and</td>
<td>Page 101 Step 3</td>
</tr>
<tr>
<td>discuss the similarities and differences among the rats’ responses. Instruct</td>
<td>M</td>
</tr>
<tr>
<td>students to answer the questions on Master 4.3.</td>
<td></td>
</tr>
<tr>
<td>Have a class discussion about the questions.</td>
<td>Pages 101–104 Step 4</td>
</tr>
<tr>
<td>Ask students to consider the question, Why do humans continue to abuse drugs?</td>
<td>Page 104 Step 5</td>
</tr>
</tbody>
</table>
What the Teacher Does

<table>
<thead>
<tr>
<th>What the Teacher Does</th>
<th>Procedure Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write the definition of addiction on the board or overhead transparency.</td>
<td>Page 104 Step 6</td>
</tr>
<tr>
<td>• Addiction is a chronic, relapsing brain disease characterized by compulsive drug-taking despite adverse health, social, or legal consequences.</td>
<td></td>
</tr>
<tr>
<td>Ask students to consider whether Rat A (continued cocaine use) and Rat C (continued stimulation of reward pathway) experienced any adverse effects. What adverse effects do drug-addicted humans experience?</td>
<td>Pages 104–105 Step 7</td>
</tr>
<tr>
<td>Prompt students to consider the distinction between abuse and addiction in humans by asking the following questions.</td>
<td>Page 105 Step 8</td>
</tr>
<tr>
<td>• When does abuse become addiction?</td>
<td></td>
</tr>
<tr>
<td>• What causes abuse to become addiction?</td>
<td></td>
</tr>
<tr>
<td>• Does the change from abuse to addiction occur at the same level (amount of drug taken, duration of drug abuse) of drug abuse for different individuals?</td>
<td></td>
</tr>
</tbody>
</table>

Activity 3: When Does Abuse Become Addiction?

<table>
<thead>
<tr>
<th>Step</th>
<th>Activity Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Display a transparency of Master 4.4. Have students play through the game. Each student should play individually, but the group members will share the deck of cards.</td>
</tr>
<tr>
<td>2.</td>
<td>As a class, discuss the game and the results. Guide the discussion with the following questions.</td>
</tr>
<tr>
<td>3.</td>
<td>• How many choice cards did each person pick?</td>
</tr>
<tr>
<td></td>
<td>• How many people equaled or went over the value of the switch card?</td>
</tr>
<tr>
<td></td>
<td>• How does this game relate to drug abuse and drug addiction?</td>
</tr>
<tr>
<td></td>
<td>• What does the transition, or switch, card mean in regard to drug addiction?</td>
</tr>
<tr>
<td></td>
<td>• Is everyone’s transition, or switch, level the same?</td>
</tr>
<tr>
<td></td>
<td>• What does the risk card mean?</td>
</tr>
<tr>
<td></td>
<td>• Is everyone’s risk card the same?</td>
</tr>
<tr>
<td></td>
<td>• Why is the risk card face down?</td>
</tr>
<tr>
<td></td>
<td>• What factors influence a person’s risk of becoming addicted to drugs?</td>
</tr>
<tr>
<td></td>
<td>• What do the choice cards represent?</td>
</tr>
<tr>
<td></td>
<td>• If a total score that equals or goes over the switch value indicates addiction, did anyone become addicted to drugs with the first drug use?</td>
</tr>
<tr>
<td>What the Teacher Does</td>
<td>Procedure Reference</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Have students play the game again now that they can relate it to the issues of drug abuse and drug addiction.</td>
<td>Page 110 Step 4</td>
</tr>
<tr>
<td>Ask students if they played the game any differently this time. Did they make different choices?</td>
<td>Page 110 Step 5</td>
</tr>
<tr>
<td>Discuss the idea of the switch card. Does anyone really know at what point in drug abuse the brain changes and the person who is abusing drugs the abuser becomes an addict? How could you modify the card game to account for this?</td>
<td>Page 110 Step 6</td>
</tr>
<tr>
<td>Have the students play the game again, but leave the switch card face down this time.</td>
<td>Page 110 Step 7</td>
</tr>
</tbody>
</table>
| Continue the discussion of the game and its relationship to drug abuse and addiction. Ask students to summarize the main points that the game conveys:
• Drug abuse involves choice.
• The point at which a person’s brain is changed and drug abuse becomes addiction is different and unknown for each individual.
• Everyone has risk factors.
• A person does not become addicted to drugs after one episode of abuse. | Page 110 Step 8 |
| To model the fact that one episode of drug abuse can result in lethal consequences (which is different from addiction), insert the jokers into the pile of choice cards. Have the students play the game again. If a student draws a joker, the game is over for that student. | Page 111 Step 9 (optional) |

Activity 4: Environmental, Behavioral, and Social Influences on Drug Abuse and Addiction

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Display the top section of a transparency of Master 4.5. Ask students to answer the question.</td>
<td>Page 111 Step 1</td>
</tr>
<tr>
<td>Reveal the next section of Master 4.5. Again have students answer the question and discuss the responses.</td>
<td>Page 111 Step 2</td>
</tr>
<tr>
<td>Reveal the remaining section of Master 4.5 and have students read the case studies.</td>
<td>Page 112 Step 3</td>
</tr>
</tbody>
</table>
What the Teacher Does

Discuss the cases with the class using the following questions to guide the discussion.

• Why did these two individuals begin taking morphine and then continue to take morphine?
• What are the differences in how Chris and Pat take morphine?
• How may these differences have influenced whether addiction develops?
• Is a larger dose of a drug the only factor to consider when thinking about the causes of drug addiction?
• Is the length of time that someone has been taking drugs enough to determine if addiction will develop?
• What factors other than the amount (dose) of the drug taken and the period of time for which the drug is taken may contribute to addiction?

Activity 5: Long-Term Effects of Drug Abuse and Addiction

Ask the students to watch the minidocumentary online. From the activities menu, select Lesson 4—Drug Abuse and Addiction.

Ask students to write answers to the following questions before discussing the questions as a class.

• What was the most surprising thing you learned about the effects of drugs?
• What makes this fact surprising to you?
• On the basis of what you have learned through analyzing the rat experiment, the card game, and the minidocumentary, would you say that addiction is a disease?

Encourage students to learn about how drugs affect other body systems by doing library or Internet searches.

Pages 112–113

= Involves using the Internet.
= Involves copying a master.
= Involves making a transparency.
Activity 1: How Does Drug Abuse Begin?

Ask the class, “What is a drug?” Write responses on the board or a transparency. Allow differing views to be discussed.

Write the following definitions for drug and medication on the board or transparency. Inform students that, for this discussion, you will use the terms according to these definitions.

- A *medication* is a drug that is used to treat an illness or disease according to established medical guidelines.
- A *drug* is a chemical compound or substance that can alter the structure and function of the body. Psychoactive drugs affect the function of the brain, and some of these may be illegal to use and possess.

Ask students to list examples of both medications and drugs.

Continue the class discussion by asking, “Why do people start abusing drugs?” Accept reasonable answers.

Activity 2: Drug Abuse Is Voluntary; Addiction Is Compulsive

Organize students into groups of four. Explain how the rats in the experiment were in cages that had two levers. Depending on which lever the rat pressed, it receives a food reward or either an injection or electrical stimulus.

Give each student a copy of Masters 4.1 and 4.2. Instruct groups to choose one rat’s data to graph.

Give each student a copy of Master 4.3. Ask groups to compare the graphs and discuss the similarities and differences among the rats’ responses. Instruct students to answer the questions on Master 4.3.

Have a class discussion about the questions.

Ask students to consider the question, Why do humans continue to abuse drugs?
<table>
<thead>
<tr>
<th>What the Teacher Does</th>
<th>Procedure Reference</th>
</tr>
</thead>
</table>
| Write the definition of *addiction* on the board or overhead transparency.
• *Addiction* is a chronic, relapsing brain disease characterized by compulsive drug-taking despite adverse health, social, or legal consequences. | Page 104
Step 6 |
| Ask students to consider whether Rat A (continued cocaine use) and Rat C (continued stimulation of reward pathway) experienced any adverse effects. What adverse effects do human drug addicts experience? | Pages 104–105
Step 7 |
| Prompt students to consider the distinction between abuse and addiction in humans by asking the following questions.
• When does abuse become addiction?
• What causes abuse to become addiction?
• Does the change from abuse to addiction occur at the same level (amount of drug taken, duration of drug abuse) of drug abuse for different individuals? | Page 105
Step 8 |

Activity 3: When Does Abuse Become Addiction?

Divide the class into groups of three students. Give each group a deck of cards that have been divided into two piles. Tell the students that the small pile contains the face cards and the larger pile has the aces and number cards.

As a class, discuss the game and the results. Guide the discussion with the following questions.
• How many choice cards did each person pick?
• How many people equaled or went over the value of the switch card?
• How does this game relate to drug abuse and drug addiction?
• What does the transition, or switch, card mean in regard to drug addiction?
• Is everyone’s transition, or switch, level the same?
• What does the risk card mean?
• Is everyone’s risk card the same?
• Why is the risk card face down?
• What factors influence a person’s risk of becoming addicted to drugs?
• What do the choice cards represent?
• If a total score that equals or goes over the switch value indicates addiction, did anyone become addicted to drugs with the first drug use? | Pages 106–109
Step 3 |
<table>
<thead>
<tr>
<th>What the Teacher Does</th>
<th>Procedure Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Have students play the game again now that they can relate it to the issues of drug abuse and drug addiction.</td>
<td>Page 110 Step 4</td>
</tr>
<tr>
<td>Ask students if they played the game any differently this time. Did they make different choices?</td>
<td>Page 110 Step 5</td>
</tr>
<tr>
<td>Discuss the idea of the switch card. Does anyone really know at what point in drug abuse the brain changes and the abuser becomes an addict? How could you modify the card game to account for this?</td>
<td>Page 110 Step 6</td>
</tr>
<tr>
<td>Have the students play the game again, but leave the switch card face down this time.</td>
<td>Page 110 Step 7</td>
</tr>
</tbody>
</table>
| Continue the discussion of the game and its relationship to drug abuse and addiction. Ask students to summarize the main points that the game conveys:
 • Drug abuse involves choice.
 • The point at which a person’s brain is changed and drug abuse becomes addiction is different and unknown for each individual.
 • Everyone has risk factors.
 • A person does not become addicted to drugs after one episode of abuse. | Page 110 Step 8 |
| To model the fact that one episode of drug abuse can result in lethal consequences (which is different from addiction), insert the jokers into the pile of choice cards. Have the students play the game again. If a student draws a joker, the game is over for that student. | Page 111 Step 9 (optional) |

Activity 4: Environmental, Behavioral, and Social Influences on Drug Abuse and Addiction

<p>| Display the top section of a transparency of Master 4.5. Ask students to answer the question. | Page 111 Step 1 |
| Reveal the next section of Master 4.5. Again have students answer the question and discuss the responses. | Page 111 Step 2 |
| Reveal the remaining section of Master 4.5 and have students read the case studies. | Page 112 Step 3 |</p>
<table>
<thead>
<tr>
<th>What the Teacher Does</th>
<th>Procedure Reference</th>
</tr>
</thead>
</table>
| Discuss the cases with the class using the following questions to guide the discussion.
 • Why did these two individuals begin taking morphine and then continue to take morphine?
 • What are the differences in how Chris and Pat take morphine?
 • How may these differences have influenced whether addiction develops?
 • Is a larger dose of a drug the only factor to consider when thinking about the causes of drug addiction?
 • Is the length of time that someone has been taking drugs enough to determine if addiction will develop?
 • What factors other than the amount (dose) of the drug taken and the period of time for which the drug is taken may contribute to addiction? | Pages 112–113 Step 4 |

Activity 5: Long-Term Effects of Drug Abuse and Addiction

Give each student a copy of **Master 4.6**. Allow time for students to read the information and answer the questions. Discuss the questions as a class.

Encourage students to learn about how drugs affect other body systems by doing library or Internet searches.

|M| = Involves copying a master.
|T| = Involves making a transparency.