Human Genetic Variation
National Human Genome Research Institute Home
skip navigation Main

Getting Started

Teacher's Guide Student Activities About NIH and NHGRI
glossary | map | contact 
Teacher's Guide - return to teacher's guide home hand using a mouse

Understanding Human Genetic Variation (continued)

As Figure 6 indicates, the Human Genome Project (HGP) has significantly accelerated the pace of both the discovery of human genes and the development of new health care strategies based on a knowledge of a gene's structure and function. The new knowledge and technologies emerging from HGP-related research are also reducing the cost of finding human genes. For example, the search for the gene associated with cystic fibrosis, which ended in 1989, before the inception of the HGP, required more than eight years and $50 million. In contrast, finding a gene associated with a Mendelian disorder now can be accomplished in less than a year at a cost of approximately $100,000.

The last few years of research into human genetic variation have also seen a gradual transition from a primary focus on genes associated with single-gene disorders, which are relatively rare in the human population, to an increasing focus on genes associated with multifactorial diseases. Because these diseases are not rare, we can expect that this work will affect many more people. Understanding the genetic and environmental bases for these multifactorial diseases also will lead to increased testing and the development of new interventions that likely will have an enormous effect on the practice of medicine in the next century.

Genetics, Ethics, and Society

What are the implications of using our growing knowledge of human genetic variation to improve personal and public health? As noted earlier, the rapid pace of the discovery of genetic factors in disease has improved our ability to predict the risk of disease in asymptomatic individuals. We have learned how to prevent the manifestations of some of these diseases, and we are developing the capacity to treat others.

Yet, much remains unknown about the benefits and risks of building an understanding of human genetic variation at the molecular level. While this information would have the potential to dramatically improve human health, the architects of the HGP realized that it would also raise a number of complex ethical, legal, and social issues. Thus, in 1990 they established the Ethical, Legal, and Social Implications (ELSI) program to anticipate and address the ethical, legal, and social issues that arise from human genetic research. This program, perhaps more than any other, has focused public attention, as well as the attention of educators, on the increasing importance of preparing citizens to understand and contribute to the ongoing public dialogue related to advances in genetics.

Ethics is the study of right and wrong, good and bad. It has to do with the actions and character of individuals, families, communities, institutions, and societies. During the last two and one-half millennia, Western philosophy has developed a variety of powerful methods and a reliable set of concepts and technical terms for studying and talking about the ethical life. Generally speaking, we apply the terms "right" and "good" to those actions and qualities that foster the interests of individuals, families, communities, institutions, and society. Here, an "interest" refers to a participant's share or participation in a situation. The terms "wrong" or "bad" apply to those actions and qualities that impair interests.

Ethical considerations are complex and multifaceted, and they raise many questions. Often, there are competing, well-reasoned answers to questions about what is right and wrong, and good and bad, about an individual's or group's conduct or actions. Typically, these answers all involve appeals to values. A value is something that has significance or worth in a given situation. One of the exciting events to witness in any discussion in ethics is the varying ways in which the individuals involved assign values to things, persons, and states of affairs. Examples of values that students may appeal to in a discussion about ethics include autonomy, freedom, privacy, sanctity of life, religion, protecting another from harm, promoting another's good, justice, fairness, relationships, scientific knowledge, and technological progress.

Acknowledging the complex, multifaceted nature of ethical discussions is not to suggest that "anything goes." Experts generally agree on the following features of ethics. First, ethics is a process of rational inquiry. It involves posing clearly formulated questions and seeking well-reasoned answers to those questions. For example, we can ask questions about an individual's right to privacy regarding personal genetic information; we also can ask questions about the appropriateness of particular uses of gene therapy. Well-reasoned answers to such questions constitute arguments. Ethical analysis and argument, then, result from successful ethical inquiry.

Second, ethics requires a solid foundation of information and rigorous interpretation of that information. For example, one must have a solid understanding of biology to evaluate the recent decision by the Icelandic government to create a database that will contain extensive genetic and medical information about the country's citizens. A knowledge of science is also needed to discuss the ethics of genetic screening or of germ-line gene therapy. Ethics is not strictly a theoretical discipline but is concerned in vital ways with practical matters.

Third, discussions of ethical issues often lead to the identification of very different answers to questions about what is right and wrong and good and bad. This is especially true in a society such as our own, which is characterized by a diversity of perspectives and values. Consider, for example, the question of whether adolescents should be tested for late-onset genetic conditions. Genetic testing centers routinely withhold genetic tests for Huntington disease (HD) from asymptomatic patients under the age of 18. The rationale is that the condition expresses itself later in life and, at present, treatment is unavailable. Therefore, there is no immediate, physical health benefit for a minor from a specific diagnosis based on genetic testing. In addition, there is concern about the psychological effects of knowing that later in life one will get a debilitating, life-threatening condition. Teenagers can wait until they are adults to decide what and when they would like to know. In response, some argue that many adolescents and young children do have sufficient autonomy in consent and decision making and may wish to know their future. Others argue that parents should have the right to have their children tested, because parents make many other medical decisions on behalf of their children. This example illustrates how the tools of ethics can bring clarity and rigor to discussions involving values.

One of the goals of this module is to help students see how understanding science can help individuals and society make reasoned decisions about issues related to genetics and health. Activity 5, Making Decisions in the Face of Uncertainty, presents students with a case of a woman who is concerned that she may carry an altered gene that predisposes her to breast and ovarian cancer. The woman is faced with numerous decisions, which students also consider. Thus, the focus of Activity 5 is prudential decision making, which involves the ability to avoid unnecessary risk when it is uncertain whether an event actually will occur. By completing the activity, students understand that uncertainty is often a feature of questions related to genetics and health, because our knowledge of genetics is incomplete and constantly changing. In addition, students see that making decisions about an uncertain future is complex. In simple terms, students have to ask themselves, "How bad is the outcome and how likely is it to occur?" When the issues are weighed, different outcomes are possible, depending on one's estimate of the incidence of the occurrence and how much burden one attaches to the risk.

Clearly, science as well as ethics play important roles in helping individuals make choices about individual and public health. Science provides evidence that can help us understand and treat human disease, illness, deformity, and dysfunction. And ethics provides a framework for identifying and clarifying values and the choices that flow from these values. But the relationships between scientific information and human choices, and between choices and behaviors, are not straightforward. In other words, human choice allows individuals to choose against sound knowledge, and choice does not require action.

Nevertheless, it is increasingly difficult to deny the claims of science. We are continually presented with great amounts of relevant scientific and medical knowledge that is publicly accessible. As a consequence, we can think about the relationships between knowledge, choice, behavior, and human welfare in the following ways:

One of the goals of this module is to encourage students to think in terms of these relationships, now and as they grow older.

back    1 | 2 | 3     

Copyright | Credits | Accessibility